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Large packet switching computer networks on the order of hundreds or thousands
of nodes will soon emerge to handle the fast-growing demands in data communication
and resource sharing among various information processing systems around the world.
The network topology design problem has long been recognized as extremely complex
and very quickly becomes unmanageable as the size of the network increases. Existing
heuristic design procedures are quite efficient for the design of small to moderate- )
.sized networks (25-75 nodes); however, they become very costly and even prohibitive
when dealing with large networks. A design methodology baseg on the hierarchical
clustering of the network nodes is presented in this paper in order to alleviate the
computational cost involved in the design. More specifically, the emphasis is on the
determination of a clustering structure which minimizes the computational cost of
the design. Such a cost is assumed to have 2 polynomial growth with the number of
nodes in the subnet to be designed. We present optimum results both for the number
of clusters, number of superclusters, etc., and for the number of hierarchical levels.
An expression for the average delay of a message in such a hierarchical network is also
provided in terms of the average delays in the subnets composing the network. This
decomposition leads to the design of smaller subnetworks for which we can utilize
present design strategies.

1. INTRODUCTION

Computers have become essential in many of the daily operations of most public and
private enterprises. Besides the scientific andfor data-management tasks handled
within a computing facility, a rather tremendous volume of data transaction must be
exchanged among different facilities whether or not they are located remotely. More-
over, the need for resource sharing of specialized hardware, software, data banks, etc.,
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has been long recognized [1]. As a result, distributed packet switching computer com-
munication networks have come about to satisfy the ever-growing demands in data
communication and resource sharing.

The success of the novel packet-switching technique in networks has been clearly
demonstrated with the pioneering ARPANET [2-6]. This network, in operation since
1969, set the pace for the development of a-multitude of other networks throughout
the world (EPSS in England, CYCLADES and TRANSPAC in France, EIN and EURO-
NET in Europe, DATAPAC in Canada, TELENET and AUTODIN II in the USA, etc.).
It has also been the prototype for the developing data carrier industry (which some
feel may become comparable in size to the telephone industry in a few years!).

A major network component is the communication subnet which is composed of thé
hardware and software necessary to carry data messages between host computers,
terminal handlers, or other devices attached to the network.

Several issues arise with regard to the topological design and operational procedures
for the communication subnet. Basically, the topological design is concerned with the
location of the switching nodes, the selection of channel capacities and their geo-
graphical layout so as to satisfy the traffic and performance requirements with the
least cost. Dynamic operational procedures control and direct the flow of messages in
the network so as to avoid network congestion and to adapt to failures while main-

taining a good network performance.

" A great deal of work has been devoted to the development of efficient design 2nd
operational procedures. The principles of these techniques may be found in the appro-
priate references [7-13] and the bibliographies therein.

Existing procedures are quite suitable for the efficient design and operation of small
to moderate-sized networks. Unfortunately, they become very costly (from a compu-
tational point of view) and in some instances infeasible if directly applied in the con-
text of large networks [8, 9, 11, 14, 15]. Predictions indicate that, in fact, large net-
works of the order of hundreds (or possibly thousands) of nodes are soon to come.
As a result, other design and operational procedures must be found which handle the
large network case.

We address the issue of adaptive routing in large networks [16-18]. We observe that
indeed the storage and channel capacity requirements due to routing become exces-
sively costly as the number of nodes in the network becomes large. Hierarchical
routing schemes based on the hierarchical clustering of the network nodes are there
proposed to reduce the cost of routing. Those studies show a remarkable efficiency
of optimzlly selected hierarchical routing schemes for large networks.

In this paper our interest lies in the development of topological design procedures
for large networks. Here again, clustering is introduced to reduce the cost of design.

Several different formulations of the design problem related to the communication
subnetwork can be found in the literature [9, 10, 13]. Generally, they correspond 10
different choices of performance measures, design variables, and constraints. Here,
we select the following very general formulation:

Given: Node locations,
channel capacity options and costs
Minimize: Total communication cost
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Over: Topology,
channe] capacities,
routing .

Subject to: Delay constraint,
reliability constraint,
traffic requirement.

In general, there are 2 V=12 pogsible topologies, where NV is the number of nodes.
Furthermore, capacities are available in discrete sizes. In addition, the constraints
must be satisfied. This means that an enormous integer optimization problem must be
solved. The nonlinearity of the time-delay functions [7, 10] and, in some cases, of
the reliability measure [9] add more dimensions of complexity to the problem. A
connectivity of 2 or 3 is often used as a reliability constraint; a higher connectivity
may be required for large networks.

There exists no efficient technique for the exact solution of this topological design
problem. Several heuristic procedures have been proposed and implemented. Among
them, we mention the Branch X-change method [9], the cut saturation method [9],
and the Concave Branch Elimination method [10, 13]. Typically they start with an
initial topology over which they perform some alterations in the course of the opti-
mization. Built into those procedures and inherent in the multicommodity nature of
the flow is the determination of the shortest path between any pair of nodes in the
network.* This operation requires between N* to N> operations and may be per-
formed many times in the course of the optimization. The overall computational
complexity corresponding to those heuristics is estimated to b®on the order of N° to
N® [9,14].

For networks with more than a few hundred nodes, present procedures fail because
of the enormous amount of computer time and storage needed to perform the sub-
optimization. Design procedures, based on hierarchical clustering, have been pro-
posed [14, 15, 19, 20] to substantially reduce the computational cost and the storage
requirement involved in the optimization step. Generally speaking, in a two-level hier-

‘archical design, the nodes will be grouped into clusters and *‘gates™ (special cluster-
exchange nodes) will be selected from each cluster. Cluster subnets will be designed
separately, and then a supemnet of gates will be designed to connect the clusters
together. The assumption is that nodes in the same cluster are most likely to be very
few hops apart in either a nonhierarchical or hierarchical design. The approach
described briefly above could be easily extended to more than two levels in the hier-
archy (see Sec. 2).

The emphasis of this paper is on the determination of a clustering structure to be
used in the design phase which minimizes the computational cost of the design. Such
a cost is assumed to have a polynomial growth with the number of nodes in the sub-
net to be designed. We present optimum results both for the number of clusters,
superclusters, etc., and for the number of hierarchical levels when the same design
strategy (technology) is considered at all levels. Optimal clustering structures are also
determined when different design strategies are considered, provided that the number

*Because of reliability requirements, tree networks are not considered in this study.
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of levels is given. An expression for the average delay of a message in such a hier-
archical network is also provided in terms of the average delays in the layer subnets
composing the network. This decomposition should consequently lead to the design
of smaller subnetworks for which we can utilize present design strategies. The prob-
lem of node assignment to clusters is not considered here; some nearness measures
are, however, suggested. )

Frank and others [9, 14] have shown from a feasibllxty study of a 1000 node net-
work that, indeed, hierarchical structures are desirable for the design of large net-
works. They also posed the same questions concerning the optimal clustering struc-
ture but failed to answer them for the general case we consider (m levels).

2. HIERARCHICAL DESIGN OF COMPUTER NETWORKS: METHODOLOGY

The main idea behind the hierarchical design is to impose a decomposable structure
on the design problem which will result in 2 set of smaller subproblems. In other
words, we will introduce independence among subsets of design variables. The im-
posed independence will substantially reduce the set of feasible solutions and also, as
a direct consequence, the computational cost. In doing so, there is the distinct risk
of eliminating the optimal solution. Therefore, it is very important to seek “natural”

- decompositions.

Such decompositions will be realized through an m-evel hierarchical clustering
(MHC) of the set of nodes, based on some appropriate nearness measure. The MHC
consists of grouping the network nodes (OthJevel clusters) into 1st-level clusters,
which in turn are grouped into 2nd-level clusters, etc. This operation continues in a
bottom-up fashion until we group the (m - 2)nd-level clusters into (;m - 1)st-level
clusters whose union constitutes the mth-level cluster. The mth-level cluster is the
highest level cluster, and as such, it includes all the nodes of the network. (This
partitioning could also proceed in a top-down manner.) Because of the underlying
MHC structure the m-level hierarchical ropology design procedure will be denoted
by MHT.

The assignment of nodes to clusters, clusters to superclusters, etc., may be realized
through the application of various ad hoc clustering techniques [21-23]. These
techniques generally use a nearness measure and try to determine natura] groupings
in terms of that measure. The nearness measures must take into account the cost of
the different components of a communication network (switching nodes, channels,
etc.), the traffic and reliability requirements, the delay of a message in the net, etc.
Some examples of simple nearness measures s;; are:

8ij = 1/d;; nearness between nodes i and /, . )]

sij = 7i/(di)¢, (i)

where d;; is the geographical distance between nodes i and j, ;; is the rate of traffic
from i to J. and € is some appropriate exponent.

Along with the hierarchical clustering of the nodes, we must select the gates (ex-
change nodes) for all clusters at all levels. The function of the gates from a given
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FIG. 1. A three-level hierarchical network.

cluster is to handle the traffic exchanged between the set of nodes in that cluster and

those outside (Fig. 1). More specifically, the assumption underlying the flow of
messages is as follows.

2.1 Flow Assumption

(a) Traffic between nodes in the same cluster, at any level, will only take paths
which are internal to that cluster, i.e., paths contained in the corresponding local sub-
network.

(b) Traffic between nodes in different kth-evel clusters (k=1,...,m - 1), but
which belong to the same (k + 1)st-level cluster, will first be channeled via its local
subnetwork to a (k + 1)st-evel gate of the originating cluster; then it will take the
(k + 1)st-layer subnetwork of gates to reach a (k + 1)st-level gate of the destination
cluster, at which point it will be dispatched over the Jocal subnetwork to finally reach
the destination node. (This is a standard procedure in hierarchical networks.)

A kthayer subnetwork is defined-as a network connecting kth-evel gates which
belong to the same kth-level cluster. '

Figure 1 illustrates some of the preceding definitions for a three-level hierarchical

_design.

Once the hierarchical classes are defined and the gates selected, then the previously
developed network design techniques for moderate-sized networks may be used to
design the layer subnetworks separately.

The direct application of the clustering techniques may lead to various nonoptimal
cluster sizes, which will, in general, partially eliminate the computational gains ob-
tained from optimal size clusters [23]. It is then important to determine those MHC
structures which will minimize the computational cost incurred in the design phase of
the MHT. In order to evaluate this cost, we make the following assumptions.
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2.2 Computational Cost Assumption

(a) The computational cost incurred in the design of a kth-ayer subnet connecting a
set of n kth-evel gates is equal to n* (k=1,2,...,m).

(b) The total computational cost involved in the total design is equal to the sum of
the costs induced in the design of all the layer subnets.

The polynomial form of the computational cost is the one normally used [9] to
characterize the computational complexity of most of the present design algorithms.
The fact that different exponents a; could be selected, depending on the level of the -
hierarchy, is provided to allow the modeling of the design of hierarchical networks
where different technologies or design algorithms or both are considered at each level
or group of levels. Clearly, the polynomial form with exponent exceeding unity repre-
sents a “Joss of scale,” and it is precisely this which we exploit by partitioning our
design problem into a series of *“‘smaller’”” problems.

2.3 Gate Assignment Rule

Given an integer valued vector 8= (8;, s, . . . , Bm), Where ; £ 1, and a selection
rule, then starting at k = 1, select ., (k+ 1)th-level gates among the set of kth-level
gates of each kth-evel cluster. Repeat this step sequentially until k = m - 1. A net-
work node is considered to be a 1st-level gate (Fig. 1).

The choice of the vector 8 will be mainly related to the reliability constraint. If a
K-<onnectivity constraint is to be imposed on the topology of the nétwork, then the
vector Bmust be such that §; 2 K fori =2, 3,...,m. Thisis obvious, since the set
of the B; ith-evel gates of an (i - 1)st-level cluster represents a cut set [24] for the
other nodes in that cluster.

In summary, the main elements involved in the computational complexity of the
MHT have been identified under a set of assumptions which, hopefully, retain the
essential character of the class of hierarchical design procedures. We are now ready
to state and solve the problem of finding an optimal clustering structure.

3. OPTIMAL CLUSTERING STRUCTURE

In this section we state and solve the optimal clustering structure problem.

3.1 Problem Statement

More definitions and notation are needed with regard to the hierarchical clustering
structure. Any hierarchical classification scheme lends itself to a tree representation,
as shown in Fig. 2 [25].

A kth-level cluster, C,, is defined recursively as a set of (k - 1)thdevel clusters.
It corresponds to a node (vertex) at level k in a tree representation.

A kth-evel cluster is identified, similar to the Dewey notation, by a vector of pred-
ecessors, ixe; = (im, Ime1s - - + » ike1). The notation Cy (ix+;) will be used when there
is a need to identify C;. The index i, indicates the (m - 1)stevel cluster, say
Cpn-1 (i), to which Cy belongs; i,,., indicates the (m - 2)nd level cluster in Cp, .y (i,m)
to which Cj belongs, etc.
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FIG. 2. Tree structure of the hierarchical clustering.

Note that a leaf in the tree representation corresponds to a node (Oth-level cluster) in
the network. . S

The degree of a kth-level cluster, Cy, is defined as the number of (k - 1)st-level
clusters included in C,. It also indicates the downward degree of the corresponding
node in the tree. We denote by ny (ix,, ) the degree of Cy (ix+;); we also define ny £
{ni(ix+1)}, where i,,, is the vector of degrees of all the kth-level clusters. Moreover,
we let n = (ny, n,, . .., n,) be the degree vector. Finally, S will denote the set of
nodes and  its size.

We are now ready to derive expressions for the size constraint, the gate constraint,
and the computational cost.

The summation of the degrees of all the 1st-level clusters gives the total number of
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nodes in the network (i.c., the total number of leaves in the tree structure). Hence,

ni(ix+1) na(i3)

N="f e S Y ) 1)

im=1 ix=1 ig=1

Equation (1) will generally serve as a constraint over the choice of the optimal degree
vector n, and it will be referred to as the size constraint. To illustrate-these defini-
tions, we give an example of a two-level hierarchical clustering in the Appendix.

Let g, (ix+,) denote the number of kthevel gates in cluster Ci(ix+1); it corresponds
to the size of the kth-layer subnet which connects all the (k - 1)st-level clusters of
Cyi(ix+;). Because of the gate assignment rule, the following relation exists between
degrees and sizes:

8 (ix+1) = Binic (ixer)- ()

Note that for k = 1, the set of 1st-level gates of a 1st-level cluster is simply the set of
all the network nodes contained in that cluster (Fig. 1), hence £,(i;) = n, (iz), which
explains the convention B; = 1. For the above gate selection scheme to be feasible,
the number of kth-level gates of a kthevel cluster C, must be no less than By .j,i1-€.,
8x(ixe;) = Bxey YE=1,...,m- 1. Thisrelation, combined with Eq. (3), will hence-
forth introduce a constraint, to be referred 1o as the gate constraint, over the choice
of the degree vector n characterizing the MHC structure.

Gate Constraint

nk(ik«bl)}Bk#l/Bkv Vk:l, 2"'- ,ym- 19 Vik#l' (3)

From the above considerations, the computational cost of the design of a kth-layer
subnet is equal to [8x Gxa))* = [ﬁknk(ik.,)la". This expression, summed over all
the kth-level clusters, represents the computational cost incurred in the design of all
the kth-layer subnets, which we denote by Gy (m. n,a,p) or simply Gi:

Nm Pmeylm)  Akey(ike2) ] ok
Gk (m9 neaaB) = Z Z e Z [ﬁknk(lkol)] 1)
. im=l im-y=i iker=1 4)

Gm(m,0,6,8) = (B )™

Note that for k = m, by convention, we will set the multiple summation to unity.
The total computational cost is

Gim na.B)= 3 Gi(m, n.a.p). )

k=1
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Finally, we have the following:

Problern Statement

Given: N, a,
Minimize: G(m,n,a,B) [See Eq. (5))
Over: mandn '
Subject to: size constraint  [See Eq. (1)], . (6)
gate constraint  [See Eq. (3)],
m positive integer variable,
n vector of positive integer variables.

3.2 General Solution

The precise problem expressed above is a nonlinear integer programming problem
which has not been solved in its entirety. In order to make progress toward a solution,
we choose to relax some of the constraints, namely, the integer and gate constraints.
It is also necessary to temporarily freeze the variable m. The relaxation of the gate
constraint is not of too much consequence, since it will be shown that for practical
values of 8, @, N, m, the optimal solution will satisfy that constraint. The added relax-
ation of the integer constraint will lead to a lovely analytic solution when m is given.
(For some particular properties of the vectors @and 8, an analytical solution is found
for the optimal m.) The resulting real-valued solution is of considerable importance
for at least two reasons: (1) the analytic study of its behavior, with respect to the
variables m,a, 8, will provide us with insight as to how much computational gain can
be obtained through the application of the MHT design procedure and into the choice
of the appropriate clustering structure. (2) A suboptimal integer solution could be
directly obtained from the real-valued solution (thereby providing an upper bound on
the cost). As a consequence of the relaxation of the integer constraint, one question
arises as to what is the meaning of a discrete summation where the upper variable is
not an integer. As an example, Eq. (A2) becomes meaningful only if n; is integer or if
all n, (i, )’s are equal, say to n,, in which case the summation becomes n, ). In
fact, the solution of the optimization problem will show that clusters of the same level
must be of the same degree; hence, all the summations in Egs. (1) and (5) will become
meaningful a posteriori!

Proposition 1. Given m, the number of levels in the hierarchy, and assuming that
o;>1foralli=1,...,m, then the optimal clustering structure is such that:

(a) All clusters at the same level, k=1,...,m,are composed of an equal number of
_ Jower level clusters (i.e., all nodes at the same level in the tree representation are of
equal degree). The optimal degree vector reduces to an m-dimensional vector, n = (n,,
ny, ..., Nm) whose components are the solution of the following set of difference
equations:

nk(ik.,)=nk Vk=l,...,mandikﬂ,
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N
ny & ————,
n,n, ce e n,,,
k-1 Die/D 4y )
I-I (ax" 1) k-1
ny = | = By ﬁ n “Tlier el k=2,3 m
k ak(ﬁk)ak Dk fako i s » s PRU
where
k fk-} j=2
Dk=2(n a,-)(n(a;-l)) Vk>1, ®)
j*=2 \i=j i=
and
=1 T2 1) 1§ LA P
B, 1Pk k= n(a,--l) o o k
et % = Q._al'Di L__ Hi:ll"i, vk22.
[Dk] /’I:! ! (Bi)al (M
. ®
(b) With this optimum solution, the minimum computational cost is
G(m!a:ﬂ) = Bm#]» (lo)

The proof is given in [16] ; the special m = 2 case is treated in the Appendix.
As a consequence of Proposition 1, the optimal size vector also reduces to an m-
dimensional vector, g = (£,,£3, - - - ,&m ), Whose components are given by

8 =Bxnk, k=1,...,m. (11)

The combination of Egs. (8) and (9), at k = m + 1, will provide an explicit expres-
sion for the minimum computational cost, G(m,a, 8). [In what foliows the shorter
notation G and G(m) will also be used.] The next natural step to take is to perform
the minimizarion of G with respect to m. This may easily be done numerically when
m is restricted to a certain range of integer values. However, for some particular
choices of @ and 8, we can derive an analytic expression for the global optimum. Let
us first consider the case where a; < 1.

Proposition 2. Under the condition, 0 < a; <1, the global optimum solution of our
problem is achieved for m = 1, i.e., no clustering is required.

The proof is given in the Appendix. We now proceed with some special cases.
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3.3 Optimal Clustering Structure with Uniform Design Strategy and Gate Assignment

This section deals with the special case where the same design procedure is used at all
levels of the hierarchy. Also, an equal number of gates is selected from clusters at all
levels. That is,

g=a Vk21, a>l,

(12)
Bx=8 Vkz22, B 21.
As a result, much simpler expressions are obtained for n and G at optimality, given m.
Furthermore, it is possible, analytically, to find the optimum number of levels in the
hierarchy. At global optimality, all the layer subnets must be of equal size. This sur-
 prising result has the intuitive explanation given below.

Corollary 1. Given m, the number of levels in the hierarchy, and assuming®* that
gy =afori=1,2,...,m,thata>1, and thatﬁi=Bfoxi=2,3,...,m,thent.hc
optimal clustering structure is such that

a [fa-1\" NV Dma
n, = B —— (—.—) -_—
a-1 a B

a [(a- l)m N a-l)""'kak"ﬂ)”"1 (13)

ny =—— F . k=2,...,m.

a-1 a

With this solution, the minimum computational cost is

a(a-1)Dpy, _ 1y(@=1)"\m-1 1/Dpys
G(m, @, B) = Dmay [(ﬂa"—l) ((ij:-f—.n—) N"’"] |

(14)
where
Dy=&*1!-(a- 1) fork>1. ~ @15)

The proof [16] is a direct consequence of Proposition 1. From the above we make
the following observations.

(1) With an optimal m-evel structure, the computational cost is reduced from the
order of N® to N1e™@™=@-0™]  As an example, in Figs. 3 (and 5), we show this
reduction; e.g., when N = 100 and m = 10, we gain seven orders of magnitude. (Note
that the value at m = 1 corresponds to the nonhierarchical cost of N*.)

(2) Size vector: From Egs. (11) and (12),

g1=ny, g =Pm, k=2,3,...,m.

*a < 1 is treated in [16].
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Subsntutmg Eq (13) into the above expression, we get an expremon for g, valid for
k=1,2,...,m

(3) Gate constmint: To satisfy the gate constraint, Eq. (3), the vector n must be
such that

ny 28, m21, k=2,....m
This condition will always be satisfied if

a-1\"N . N a
(T) ;>l, 1.e.,m<1nﬁ/ p— (16)

Below, we show that the region of interest for m will effectively correspond to the
above condition.

Proposition 3 (Global optimum). Under the conditions of Eq. (12) and for m a real
variable, the global optimum™ clustering structure is achieved for a number of levels

N a
m.=1n3/ P an
and a degree vector n*

o
nlzﬁ_—y

a-1

o (18)
ni=o—7 k=23,....m,

The corresponding minimum computational cost is

o

DS @

Ga(a,B) = (5 - 1) pe

The proof results directly from the minimization of G(m, a, B), which we differentiate
with respect tom [16] .

Now for some comments regarding the global minimum solution.

1. Cost: At global optimality the computational cost is reduced to the order of M.
(This is 10 be compared to the nonhierarchical cost of N®.)

2. Sizevector: At global optimality, the size vector is such that

44
8§=Brl, k=1,2,...,m, (20)

t“Global optimum" refers to the optimum solution with respect to m. Also, * indi-
cates values at global optimality.
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Equation (20) indicates that at optimality, all the layer subnets are of equal size,
which depends only on a and §. ‘l'he explanauon of t.h:s very simple and mterest.mg
property is given below.

3. Gate constraint: From Bq (20) since a>1

gk>5,- kgl 2

Hence, the gate constraint, Eq. (3), is always satisfied at optimality. Moreover, as
noticed in Eq. (16), the optimal solution, given m < m,, will also satisfy the gate
constraint.

4. Number of layer subnets: Equation (19) may be rewritten as

G.=(%'- 1) @-1) (Ba_f_l)a', | @n

From Eq. (21), we conclude that the number of layer subnets is
NL.=(%- 1) @-1) (22)

each of size Ba/(a - 1) and each of computational cost Bla/(q,- 1)]%. The above
results could also be derived by counting the number of clusters in the tree structure
(Fig. 2).
5. Cost distribution: For practical purposes, N/§ >> 1; then from Eq. (19) we have
G, = a(N/nT)[Ba/(a - 1)]®. Let GT be the computational cost of designing the 1st-
layer subnet; then since N/nT is the total number of 1st-layer subnets, we get

Gl =QG].,

which says that the design of the 1st-layer subnets represents approx.u'nate}y 1/a of
the total computational cost.

6. Behavior of the optimal tree structure with respect to o We will assume that
B =1. Let us define a regular tree of degree K as a tree whose nodes are all of equal
downward degree K, except for the leaves (downward degree zero) [25]. As an
example, a binary tree is a regular tree with degree 2.

The global optimum solution given in Eq. (18) becomes, for g =1,

We are interested in the set of a's which yield integer solutions, i.e., which correspond
to regular tree structures. If X is the degree of such trees, then a must be such that

af(ax- 1)=K<=>a=K/(K— 1)
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Moreover, if a regular tree of degree X is composed of m,, levels, then it contains K™Ms
Jeaves. Consequently, there is a one-to-one correspondence between the set of regular
trees of degree K (K > 2 integer) whose number of levels is m, (integer > 2) and the
gobal optimal solutions, where a = K/(K - 1) and N =K"= forK=2,3,...,°.
Notice that the above set of a’s is contained in the interval (1, 2) of real values ie.,
1 <a<2. Also, a=2 corresponds to a binary tree representation. .

7. Irreducibility. The simplicity of the solution [Eq. (20)] obtained at global opti-
mality leads us to consider a more intuitive approach toward its derivation based on
irreducibility considerations.

Let us define an irreducible set of nodes as a set which is such that no computational
gain can be obtained through the application of the MHT for the design of the core-
sponding communication network. By contradiction, it is obvious that at global
optimality, each layer subnet to be designed must correspond to an irreducible set of
nodes. Let g be the size of an irreducible set. Then from Egs. (1) and (2), we get
n,=gq,n, =q/,k=2,...,muandg= B(N/ﬁ)‘/"‘. Replacing ny, by its value in

-~ Eq. (5), we arrive at an expression for the cost G in terms of m whose minimum is

attained for m =m, [16].

Note that we assumed the size of an irreducible set to be unique. This is justified
a posteriori, since an irreducible set must be such that m, = 1; hence its size No isa
solution of

which yields a unique solution.
Further properties of the optimal solution and a numerical study are provided in
Sec. 4.

3.4. Uniform Design Strategy: Variable Gate Assignment

This section deals with the case where a; = a Vk and where f; is arbitrary for
each k.

The purpose is to model design requirements whereby different reliability con-
straintst are imposed on the design of the layer subnets, depending on their level in
the hierarchy. However, the same design procedure is applied at all levels (i.e., ax = o).

Corollary 2. Under the conditions of Proposition 1, and assuming that all the a,’s are
equal, the optimal solution is, for k=1,2,...,m,

tIn [16] we derive some partial results related to global optimality when By is of the
form B; = ¥*~28, k = 2. We also study the special case of 2 proportional gate assign-
ment. In this scheme the number of kth-evel gates to be selected is proportional to
the number of (k - 1)st-level gates from which they are selected. The solution was
found to be degenerate.
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_1\m Je-)""kk1p —
a [(a l) N] Rt |

m k=i, _i-k-1k keig, _ym=k+i=1"]1/Dme;
I (ﬁ,)""’ 1) n CHul
inke) =]
X z g‘Dm . (23)

With this optimal assignment, the minimum computational cost is

m met=ig, -1 a \e-1)Dm
G =Dy, [(ﬂ g™ ey ) (;___l)

i=2

.

- neD™\m1 Vb,
X ((_“—]3,.,—) Ne ]’ "4
(43

4. VARIATIONS AND LIMITING BEHAVIOR OF THE OPTIMAL SOLUTION
'~ WITH RESPECT TO THE DESIGN VARIABLES: UNIFORM DESlGN
AND GATE ASSIGNMENT

The behavior of the computational cost and the degree vector at optimality, given
m, will now be studied with respect to m. This study is restricted to the uniform
design strategy and gate assignment case, i.e., @, = a Vk and B, = § Vk = 2. Of im-
portance is the fact that the minimum cost at a given m, G(m) (also denoted by G),
converges fairly fast to its minimum value, versus m, and remains very close to that
optimum value as m grows to infinity. A similar phenomenon will characterize the
behavior of the n,’s versus m. We will also notice that as ¢ goes to infinity, the
optimal solution, given m, is such that all layer subnets must be of equal size; such
a property was, for finite a, only true at global optimality,ie.,m=m,.

The variations of G, and m, with respect to a, 8, N do not disclose any remarkable
property, except that m, rap:dly reaches its asymptotic value as a becomes greater
than 2.

In what follows, we will restrict the study to the practical situation where

B21, NIE>1. ©5)

4.1 Behevior of the Optimal Solution and Objective Function, Given m
G(m) versus m

Section 33 showed that as m increases from zero to infinity, G(m) decreases,
reaching its minimum at m = m, [note m, > 0 because of Eq. (25) and > 1], and
then increases. The limit of G(m), as m goes to infinity is
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FIG. 3. Minimum computational cost G(m, a, f) given m;a=5,f=1.

L i =petl
Gu _mhin_ Gm)=¢ @ N.
Note that G - G, = f* [&®/(a - 1)*7] is independent of NV and that the normalized
difference (Ga - G.)/G4 = B/(N - B) goes to zero as N grows.
In what follows, two sets of figures (Figs. 3-6), each corresponding to a specific
value of the pair (a, 8), {(5, 1) (5, 3)}, will be shown. In each set, the functions G(m)

100

FIG.4. Ratio of computational cost at optimality given m and at global optimality
G/Gy;a=5,8=1.
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FIG. 5. Minimum computational cost G(m, a, f) given m;a =3, g=3.

and G(m)/G, are plotted with respect to m for several values of N,N= {50,10%, 10%,
10*, 10%, 10°}. The curves G(m) versus m illustrate the initially decreasing, then
slightly increasing and asymptotic behavior of the optimal computational cost for a
fixed m. By comparing G(m) to N®, we are able to appreciate she enormous computa-
tional gains obtained through the application of the MHT. ‘

The curves G(m)/G, versus m illustrate a “clamping” effect whereby, once G(m)
reaches its minimum value of m = m,, Eq. (17), it will appear as if it remains indef-

m

100

FIG. 6. Ratio of computational cost at optimality given m and at global optimality

G/G,;a=5,8=3.
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initely at that value. They also illustrate the fairly fast convergence of G(m) toward
a value close to the minimum, for a value of m relatively smaller than m,. This indi-
cates that we may actually obtain most of the computational gains with hierarchical
structures whose number of levels (m) is much smaller than the optimal ones (m,).
Finally, the two sets of figures are presented in order to indicate the effect of the
design parameters a and § on the behavior of the aforementioned functions.

ny versus m

Differentiating Eq. (13) with respect to m, we find, after simplification,

dn; (- 1)ym-kamek- ( @ ) (a-l m N a
ko -1-ln=+mhh—|.
dm |k Dz ., lna-l a ! h1‘6 m a-1

Fora>1and m 2 0, dn,/dm hasa unique root mq which is independent of k. Also
for m <mq the derivative is negative, and conversely, for m > my, it is positive. Con-
sequently, m varies from zero to infinity
(i) all ny’s, k < my, decrease, reach a minimum, and then increase toward their
limits.
(ii) all ny’s, k > my, increase toward their limits.
" The limit of n, for k fixed, as m goes to infinity, is

lm me=—=, k>2,kfived.

If we let k vary, more particularly if & = m, then

lim n,,=0.

me—+e
Moreover, In n, has as an asymptote, a straight line whose equation is

m a a (N)""

As can be seen in Fig. 7, the behavior of n, versus m, for k <m,, exhibits a “‘clamp-
ing” effect as previously described. Moreover, this phenomenon is quite remarkable
here, since the limit of n,, as m goes to infinity, is equal to the value of n; at global
optimality. In Fig. 7 we see our old result that n, = a/(a - Nfork>1latm=m,.
This study of how n; behaves as m deviaies from its optimal value at m, indicates
that as long as m > m,, then most of the n; take on that value which they would
have at optimality anyway [ie., a/(a- 1)]. Some of the n, (in the vicinity of k = m)
deviate considerably from a/(a - 1), but as we saw in Figures 3-6, this hardly affects
the cost G.
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FIG. 7. Variations of the optimal degrees with respect to m.

4.2 Behavior of G, and m, with Respectto a, B, N
G, versusa
Differentiating Eq. (19) with respect to &, we find

dGe (N _ o a a
da-(ﬁ l)ﬂ (a-l)""lnﬁa-l'

Under the conditions of Eq. (25)and > 1, G, is an increasing function of a. As«
goes to infinity, G, will be asymptotic to the expression e (a - 1/2)[(V/B) - 1].
If B = I the asymptoteisa straight line, which implies that at the limit, G4 Will show
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a linear growth with a. This is surprising, since the original computational cost is
proportional to the a power of the number of nodes.
G, versus N

Equation (19) shows that G, varies linearly with N. It is also important to note
that the optimal hierarchical structure reduces the computational cost from the order
of N steps to the order of N steps!

G, versus

Differentiating Eq. (19) with respect to 8, we arrive at

dG*=i__ a-210, _ -
5 (a-l)"“ﬂ [(@- N - of].

Consequently, G, is an increasing and then 2 decreasing function, as £ varies from 1 to
N [for N> af(a - 1) and under the conditions of Eq. (25)]. Equating the derivative
to zero, we find

a-1
a

Bo = N. (26)

°
Substituting Eq. (26) into Eq. (19), we arrive at the maximum value of G, (with
respect 10 ), G4(B = Bo) = N®. This maximum cost corresponds to a design with no
hierarchical structure. This last equation checks with the fact that for a set of a, 8, N,
satisfying Eq. (26), the optimal number of levels, m,, is equal to unity [Eq.(17)],i..,
for such a set, a nonhierarchical design is optimal.

m, versus N and f

From Eq. (17), we see that m,, varies as the logarithm of N/f. This logarithmic be-
havior appears to be characteristic of hierarchical structures [16,17,27].
m, versus @

Differentiating Eq. (17) with respect to a, we find

dm, _ In (N/B)
de  a(a- 1)[In(af(a- 1))]*

Consequently, for @ > 1, m, is an increasing function of a. The limiting values of
m are

mt —)09

a—=1"= < dm,
—> oo,

da
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FIG. 8. Optimal number of levels in the hierarchical design.
m, —++oo.

Q=+ oo => dm'
da

— In (V/B).

The asymptote, as a goes to infinity, is the straight line m, = (e = 1/2) In (NV/6).
Figure 8 shows the plots of m, versus a for several values of N/f. Note that m,
rapidly reaches its asymptotic value as & becomes greater than 2. Also, m, = 1 for
a = (N/B)/(N/B - 1), which means that for 1 < a < (N/B)/(V/B - 1), no partitioning
is required; furthermore, a loss will be incurred if we try to do so. This was seen to
be true also for 0 < a < 1, where no partitioning is also optimal.

4.3 Limiting Behavior of the Optimal Degree Vector, Given m, with Respect to
From Egs. (13) and (15), we obtain

n, —+o, foral kK's,k #m,
a— 1" =

n,, —0.

In other words, since the limit of n,, is zero, for any given m, m 2 ﬁ, then no cluster-
ing must be allowed. This confirms the earlier result obtained when looking at the
behavior of m, with respect to a. Also,
N i/m
ny _)B (—) >
B

aQ— +o=> - (@27)

r\ 1/m
nk—*(%) N k=2,...,m.
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Thus,
i/m
a—+o=> g, —f (—B-) , k=1,2,...,m.

Consequently, as « goes to infinity, the optimal solution, given any m, is such that all
layer subnets are of equal size. Such a property was found to be true for finite , only
at global optimality. Note the same result holds true when the §;’s are different; in
[16] we show that

Y
lim nk-B—[an,] T k=1,2,....m
k

e
a=e= i=1

This terminates our study of the optimal solution with a uniform design strategy and
gate assignment. In [16], further extensions are presented. Namely, the optimal solu-
tion G is compared with two intuitive solutions. The R-solution (R stands for root)
corresponds to a regular tree representation, i.e., all degrees, at all levels, are equal:

rén,, k=12,....m
The Q-solution models the situation where all layer subnets are of eq¥al size:
qégk, k=1,29"'am'

The properties of these three solutions are as follows [16] :

1. All three solutions possess an optimal number of levels, which is the same for G
and Q (namely, m,).

2. For large values of m, the G-solution is asymptotic to a constant, whereas the Q
and R solutions asymptotically grow linearly with m. In other words, for m > m,,
G, contrary to Q and R, is not sensitive to m.

3. The G and Q solutions meet, for any e, at m = m, and, for @ — oo, at any
given m.

4. The Q and R solutions are identical for = 1.

5. As expected, G is always smaller than or equal to Q and R, and for f# 1, Q is
certainly better than R for values of m in t.he neighborhood of m,, but not necessarily
outside.

Finally, a heuristic algorithm has also been developed [16] in order to generate an
integer suboptimal solution from the optimal real-valued solution.

So far we have determined optimal structures for the hierarchical design of computer
networks. A few questions remain unstudied, namely, the actual assignment of nodes
to clusters, the decomposition of global varizbles in terms of secondary variables
related to the different levels in the hierarchy, etc. The decomposmon of the average
delay is performed in Sec. 5.
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5. DELAY EXPRESSION FOR HIERARCHICAL NETWORKS

Given a network with an m-level hierarchical structure, the problem is to express the
total average delay in the network in terms of the average delays in the layer subnets
composing the network. We assume that part (a) of Proposition 1 is true, i.e., all kth-
level clusters are composed of an equal number of (k - 1)st-level clusters n,, (k =1,

, m). The n;’s are not necessarily optimal. We also assume that all kth-layer sub-
nets induce the same average delay, T, over the traffic. This last assumption will
usually appear as a design constraint, and as such, it is a reasonable one.

The traffic in hierarchical networks may be divided into m classes. Class k rraffic is
defined as the traffic between pairs of nodes which belong to the same kth-level
cluster but not to any lower level clusters. If we define 7, as the average delay in-
curred by class k traffic and 7;; as the average message rate from source i to destination
J, then

r=3 L E, (28)

k=]

‘where T is the total external traffic, i.e., I' = Z;;7;;, T is the average delay of a message
in the network [7], and Ty is the total class k traffic.

From the Flow Assumption we know that class k traffic, when gomg from its origin
to its destination, has to go up through k - 1 layers to the kth common layer, then
down k - 1 layers.

Consequently,

k-1
7k=2z T;i+ Ty, k=1. (29)

i=]

Substituting Eq. (29) into Eq. (28), we arrive at

T--): (r,‘+2 > r,) Te, (30)

kq inkel

which is an expression for T in terms of the T ’s. .

Iy may also be evaluated using the flow assumption, but in general, it will yield too
complicated an expression. If we assume auniform rraffic pattern,i.e.,Yjx =7 V (J, k),
then

Ty =N, - 1) (kﬁ n,-)'y, k=1. (31)

i=1

Substituting Eq. (30) into Eq. (31), after some algebra we arrive at the result stated in
Proposition 4.
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Proposition 4. Under the above assumptions, the total average delay in a hierarchical
network is

T=% [( ﬂ nk)T + Z (2N (ne+1) n n,)Tk}

k-‘l =y
As an example,t let N=10%,n, =n, =n, = 10;then T=0.9T; + 1.82T, + 1.997;.

6. SUMMARY

In this paper we studied the major aspects related to the hierarchical design of large.
computer networks. The focus was primarily on the determination of a certain
clustering structure of the set of nodes to be used in the design phase. Optimal cluster-
ing structures were determined so as to minimize the computational cost required in
the design phase. The general solution (i.e., different design strategies and gate assign-
ment from one level to another) was derived when the number of hierarchical levels m
is fixed. The global optimum solution was obtained with the more uniform case,
whereby the same design strategy and gate assignment are used at all levels. The global
optimum solution is such that all layer subnets are of equal size. Such a peculiar
property was found to have an intuitive explanation. Furthermore, we mentioned the
-one-to-one correspondence of the global optimum solution for @ = K/(K - 1) with
some regular trees of downward degree K.

Perhaps the most significant result of this work was to show in the case a; = a,
Bx = B that the cost of design reduced from N® (for a nonhierarchicg} design) to a cost
simply proportional to V. We conjecture this to be true for more genera] cases as well.

We were also able to decompose the average message delay in a hierarchical network
in terms of the average delays in the layer subnets composing the network.

Finally, it appears that the general methodology and decomposition models devel-
oped here for the design of large nets may be directly applicable or extended to more
general Jarge systems where some sort of decomposition must be introduced to allevi-
ate the difficulty in analysis, design, or evaluation.

APPENDIX: PROOFS OF PROPOSITIONS
Proof of Proposition 1

The general proof consists of showing that when all other variables are fixed, the
ny (-)’s must all be equal (to n;). Then, n, is replaced by its optimal expression in the
objective function, and the same operation is repeated for the degrees at the next level,
and so forth, until all levels are exhausted, Here we consider a two-level hierarchical
clustering composed of n, 1st-level clusters. Let i, (i, = 1,2, ..., n,) denote an
arbitrary 1st-level cluster, and n, (i;) be the corresponding number of nodes, then

N= f n, (iy). (A1)

iy=1

tA similar expression, for that specific example, T = T3 + 27T, + 2T, is glvcn in
[19], however, no generalization is shown there.
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The computational design cost of the 1st-layer subhets is

=3 I (A2)
=1

There is also a unique 2nd-ayer subnet connecting all 2nd-leve] gates. Each 1st-level
cluster contributes f, 2nd-level gates, thus G, = [,n,]%. The total cost of G is then
equal to )

G=G,+G,. (A3)

We now proceed with the proof.

First n, is fixed. Solve the problem with respecttony (i;),i; = 1,2,...,n,.

The objective function Eq. (A3), being a sum of power functions [n1(i2)) %, which
are convex in the region {n,(i;) > 0, for all i’s}, is itself a convex function in that
region (recall @, > 1). Let us take the Lagrangian:

L@ =S m @l -2 [z: n,(za)-N].

iy=1 i=

where A 2 0. v

Note that we discarded the constant term (B2n2)*: and the positivity constraint,
which we will check a posteriori. In the region {n, > 0}, the Lagrangian is a convex
function, and if the solution of VL, = 0, where V denotes the gradient operator [26],
is such that n, > 0, then it must be optimal:

oL

VL=0= — =
on, (i)

0 Vi;=l,...,n3.

Bence,

A 1/(@,-1)
> Vi2=],...,n3,

o [n @) - A=0=>n,(,)= (;

which means that all n, (i,)’s are equal, and therefore, from the size constraint,
ny(i2) = ny = Nin,,

which is greater than zero. ’I_'he rest is an optimization over the sing]e_vaﬁable ny,
whose solution satisfies Eq. (7) where m is set equal to 2. The corresponding minimal
computational cost is given by Eq. (10) where m is also set equal to 2.

Proof of Proposition 2

By contradiction, assume that m > 1; then, simnilar to the proof of Proposition 1
[16], let us fix m (m > 1, integer) and all degrees, Ni(ixsy), (k=2,...,m), and solve
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the reduced problem with respect to n; (i2)’s. ie.,

NC,
min: Gy = 3 [L@)%  [see Eq. @),

i=)
over: ny(i),

NC,
st Y m@)=N [see Eq.(1)],

i=]1

n, (i) # O real variable.

where NC, denotes the number of 1st-level clusters, and 7, (i) denotes the size of an
arbitrary 1st-level cluster. Since a; < 1, then [n,(i)]® is a concave function; hence,
the objective function above, G,, is a concave function. Also, the set ‘of feasible
vectors, n, = {n,(i)} is a bounded convex polyhedron whose vertices correspond to
vectors with all zeros except for one component equal to N, i.e., (N,0,0,...,0)and
its permutations. As a result, we are faced with the optimization of a concave func-
" tion over a bounded convex polyhedron, whose optimal solution is well known to be
at a vertex. At any vertex, G, = N°; consequently, it is the minimum. Notice that
this result is true for any NC, i.e., for any n(ixs;) (kK =2,...,m). In other words,
for any vector n satisfying the size constraint, Eq. (1), G, 2 N, which, combined
with Eq. (5), gives

G(m,n,a,B)>N* + 3" Gy(m,n,a,f) Vn,fesible.
k=2

Hence,
‘ G(m,n,a,B)>N*  Vn,feasible.

Consequently, the optimal solution to our problem (as stated at the end of Sec.3.2)
for integer m > 1, must also satisfy the above inequality which is a contradiction,
since,if m=1,G(m,n,a,B)=N%,
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